พันธะโคเวเลนต์


 
พันธะโควาเลนต์ (Covalent bond) หมายถึง พันธะในสารประกอบที่เกิดขึ้นระหว่างอะตอม 2 อะตอมที่มีค่าอิเล็กโตรเนกาติวิตีใกล้เคียงกันหรือเท่ากัน แต่ละอะตอมต่างมีความสามารถที่จะดึงอิเล็กตรอนไว้กับตัว อิเล็กตรอนคู่ร่วมพันธะจึงไม่ได้อยู่ ณ อะตอมใดอะตอมหนึ่งแล้วเกิดเป็นประจุเหมือนพันธะไอออนิก หากแต่เหมือนการใช้อิเล็กตรอนร่วมกันระหว่างอะตอมคู่ร่วมพันธะนั้นๆและมีจำนวนอิเล็กตรอนอยู่รอบๆ แต่ละอะตอมเป็นไปตามกฎออกเตต ดังภาพ
เป็นพันธะที่เกิดจากการใช้อิเล็กตรอนข้างนอกร่วมกันระหว่างอะตอมของธาตุหนึ่งกับอีกธาตุหนึ่งแบ่งเป็น 3 ชนิดด้วยกัน
1. พันธะเดี่ยว (Single covalent bond )เกิดจากการใช้อิเล็กตรอนร่วมกัน 1 อิเล็กตรอน เช่น F2 Cl2 CH4 เป็นต้น

2. พันธะคู่ ( Doublecovalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกันของธาตุทั้งสองเป็นคู่ หรือ 2 อิเล็กตรอน เช่น O2 CO2 C2H4 เป็นต้น
3. พันธะสาม ( Triple covalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกัน 3 อิเล็กตรอน ของธาตุทั้งสอง เช่น N2 C2H2 เป็นต้น

การอ่านชื่อสารประกอบโควาเลนซ์

กล่องข้อความ: 1   อ่าน  มอนอ (mono-)	6   อ่าน  เฮกซะ (Hexa-)  2   อ่าน  ได (Di-)	  	7   อ่าน  เฮปตะ (Hepta-)  3   อ่าน  ไตร (Tri-)	   	8   อ่าน  ออกตะ (Oxta-)  4   อ่าน  เตตระ (Tetra-)	9   อ่าน  โมนะ (Mona-)  5   อ่าน เพนตะ (Penta-)	10 อ่าน  เดคะ (Deca-)

  • สารประกอบของธาตุคู่ ให้อ่านชื่อธาตุที่อยู่ข้างหน้าก่อน แล้วตามด้วยชื่อธาตุที่อยู่หลัง โดยเปลี่ยนเสียงพยางค์ท้ายเป็น “ ไอด์” (ide)
  • ให้ระบุจำนวนอะตอมของแต่ละธาตุด้วยเลขจำนวนในภาษากรีก ดังตาราง
  • ถ้าสารประกอบนั้นอะตอมของธาตุแรกมีเพียงอะตอมเดียว ไม่ต้องระบุจำนวนอะตอมของธาตุนั้น แต่ถ้าเป็นอะตอมของธาตุหลังให้อ่าน “ มอนอ” เสมอ
กล่องข้อความ: ตัวอย่าง  N2O3   	อ่านว่า  ไดไนโตรเจนไตรออกไซด์  PCl5	อ่านว่า  ฟอสฟอรัสเพนตะคลอไรด์  CO	อ่านว่า  คาร์บอนมอนอกไซด์     

กล่องข้อความ: โครงสร้างโมเลกุลโควาเลนต์ขนาดยักษ์  	โครงสร้างโมเลกุลโควาเลนต์ขนาดยักษ์ของคาร์บอนกับคาร์บอน มีการจัดเรียงตัวได้  2  แบบคือ แบบแรกอะตอมของคาร์บอนจะเรียงตัวกันเป็นแผ่นราบรูปหกเหลี่ยมด้านเท่า ได้แก่ โครงสร้างของกราไฟต์ (graphite) และแบบที่สองอะตอมของคาร์บอนจะเรียงตัวกันเป็นรูปพีระมิด ได้แก่ โครงสร้างของเพชร (diamond)                                            โครงสร้างโมเลกุลของกราไฟต์                                       โครงสร้างโมเลกุลของเพชร      นอกจากนี้  H.W. Kroto แห่ง Sussex University ประเทศอังกฤษ และ R.F. Smaller กับ R.F. Curl แห่ง Rice University ประเทศสหรัฐอเมริกา ที่ได้รับรางวัลรางวัลโนเบล ประจำปี พ.ศ.2539  จากการค้นพบโมเลกุลของคาร์บอนรูปแบบใหม่ที่ R. Buckminster Fuller สถาปนิกชาวอังกฤษเป็นผู้คิดสร้างขึ้น จึงมีชื่อเป็นทางการว่า buckminster fullerene หรือชื่อเล่นว่า buckyball (C-60) โดยที่โครงสร้างมีลักษณะกลมคล้ายลูกฟุตบอล       โครงสร้างโมเลกุลของ buckyball    เมื่อไม่นานมานี้นักวิทยาศาสตร์สามารถสังเคราะห์โมเลกุลของคาร์บอนที่มีขนาดโมเลกุลใหญ่กว่า C60 ได้ เช่น C70 , C240 , C540 ซึ่งมีชื่อเรียกว่า super fullerene และ C960 ซึ่งมีชื่อเรียกว่า hyper fullerene ซึ่งขณะนี้นักวิทยาศาสตร์ยังทำการค้นคว้าวิจัยโมเลกุลของคาร์บอนต่อไป ดังนั้นในอนาคตเราคงได้เห็นเทคโนโลยีใหม่ ๆ ที่จะมีประโยชน์ต่อมนุษย์ต่อไป
การพิจารณารูปร่างโมเลกุลโควาเลนต์  
โมเลกุลโควาเลนต์ในสามมิตินั้น สามารถพิจารณาได้จากการผลักกันของอิเล็กตรอนที่มีอยู่รอบๆ อะตอมกลางเป็นสำคัญ โดยอาศัยหลักการที่ว่า อิเล็กตรอนเป็นประจุลบเหมือนๆ กัน ย่อมพยายามที่แยกตัวออกจากกนให้มากที่สุดเท่าที่จะกระทำได้ ดังนั้นการพิจารณาหาจำนวนกลุ่มของอิเล็กตรอนที่อยู่รอบๆ นิวเคลียสและอะตอมกลาง จะสามารถบ่งบอกถึงโครงสร้างของโมเลกุลนั้น ๆ ได้ โดยที่กลุ่มต่างๆ มีดังนี้
- อิเล็กตรอนคู่โดดเดี่ยว
- อิเล็กตรอนคู่รวมพันธะได้แก่ พันธะเดี่ยว พันธะคู่ และพันธะสาม
ทั้งนี้โดยเรียงตามลำดับความสารารถในการผลักอิเลคตรอนกลุ่มอื่นเนื่องจาก อิเลคตรอนโดดเดี่ยวและอิเลคตรอนที่สร้างพันธะนั้นต่างกันตรงที่อิเล็กตรอน โดยเดี่ยวนั้นถูกยึดด้วยอะตอมเพียงตัวเดียว ในขณะที่อิเล็กตรอนที่ใช้สร้างพันธะถูกยึดด้วยอะตอม 2 ตัวจึงเป็นผลให้อิเลคตรอนโดดเดี่ยวมีอิสระมากกว่าสามารถครองพื้นที่ในสามมิ ตได้มากกว่า ส่วนอิเล็กตรอนเดี่ยวและอิเล็กตรอนคู่โดดเดี่ยว รวมไปถึงอิเล็กตรอนคู่ร่วมพันธะแบบต่าง ๆ นั้นมีจำนวนอิเลคตรอนไม่เท่ากันจึงส่งผลในการผลักอิเลคตรอนกลุ่มอื่นๆ ได้มีเท่ากัน โครงสร้างที่เกิดจกการผลักกันของอิเล็กตรอนนั้น สามารถจัดเป็นกลุ่มได้ตามจำนวนของอิเล็กรอนที่มีอยู่ได้ตั้งแต่ 1 กลุ่ม 2 กลุ่ม 3 กลุ่ม ไปเรื่อยๆ เรียกวิธีการจัดตัวแบบนี้ว่า ทฤษฎีการผลักกันของคู่อิเล็กตรอนวงนอก (Valence Shell Electron Pair Repulsion : VSEPR) ดังภาพ

ภาพแสดงรูปร่างโครงสร้างโมเลกุลโควาเลนต์แบบต่างๆ ตามทฤษฎี VSEPR
หมายเหตุ A คือ จำนวนอะตอมกลาง (สีแดง)
X คือ จำนวน อิเล็กตรอนคู่รวมพันธะ (สีน้ำเงิน)
E คือ จำนวนอิเล็กตรอนคู่โดดเดี่ยว (สีเขียว)

แรงยึดเหนี่ยวระหว่างโมเลกุล ( Van de waals interaction)
เนื่องจากโมเลกุลโควาเลนต์ปกติจะไม่ต่อเชื่อมกันแบบเป็นร่างแหอย่างพันธะโลหะหรือไอออนิก แต่จะมีขอบเขตที่แน่นอนจึงต้องพิจารณาแรงยึดเหนี่ยวระหว่างโมเลกุลด้วย ซึ่งจะเป็นส่วนที่ใช้อธิบายสมบัติทางกายภาพของโมเลกุลโควาเลนต์ อันได้แก่ ความหนาแน่น จุดเดือด จุดหลอมเหลว หรือความดันไอได้ โดยแรงยึดเหนี่ยวระหว่างโมเลกุลนั้นเกิดจากแรงดึงดูดเนื่องจากความแตกต่างของประจุเป็นสำคัญ ได้แก่
1. แรงลอนดอน ( London Force) เป็นแรงที่ เกิดจากการดึงดูดทางไฟฟ้าของโมเลกุลที่ไม่มีขั้วซึ่งแรงดึงดูดทางไฟฟ้านั้น เกิดได้จากการเลื่อนที่ของอิเล็กตรอนอย่างเสียสมดุลทำให้เกิดขั้วเล็กน้อย และขั้วไฟฟ้าเกิดขึ้นชั่วคราวนี้เอง จะเหนี่ยวนำกับโมเลกุลข้างเคียงให้มีแรงยึดเหนี่ยวเกิดขึ้น ดังภาพ
อิเล็กตรอนสม่ำเสมอ........................อิเล็กตรอนมีการเปลี่ยนแปลงตามเวลา
ดังนั้นยิ่งโมเลกุลมีขนาดใหญ่ก็จุยิ่งมีโอกาสที่อิเลคตรอนเคลื่อนที่ได้ เสียสมดุลมากจึงอาจกล่าวได้ว่าแรงลอนดอนแปรผันตรงกับขนาดของโมเลกุล เช่น F2 Cl2 Br2 I2 และ CO2 เป็นต้น
2. แรงดึงดูดระหว่างขั้ว (Dipole-Dipole interaction)เป็นแรงยึดเหนี่ยวที่เกิดระหว่างโมเลกุลที่มีขั้วสองโมเลกุลขึ้นไปเป็นแรงดึงดูดทางไฟฟ้าที่แข็งแรงกว่าแรงลอนดอน เพราะเป็นขั้นไฟฟ้าที่เกิดขึ้นอย่างถาวร โมเลกุลจะเอาด้านที่มีประจุตรงข้ามกันหันเข้าหากัน ตามแรงดึงดูดทางประจุ เช่น H2O HCl H2S และ CO เป็นต้น ดังภาพ
3. พันธะไฮโดรเจน ( hydrogen bond ) เป็น แรงยึดเหนี่ยวที่มีค่าสูงมาก โดยเกิดระหว่างไฮโดรเจนกับธาตุที่มีอิเล็กตรอนคู่โดดเดี่ยวเหลือ เกิดขึ้นได้ต้องมีปัจจัยต่างๆ ได้แก่ ไฮโดรเจนที่ขาดอิเล็กตรอนอันเนื่องจากถูกส่วนที่มีค่าอิเล็กโตรเนกาติวิตี สูงในโมเลกุลดึงไป จนกระทั้งไฮโดรเจนมีสภาพเป็นบวกสูงและจะต้องมีธาตุที่มีอิเลคตรอนคู่โดด เดี่ยวเหลือและมีความหนาแน่นอิเลคตรอนสูงพอให้ไฮโดรเจนที่ขาดอิเลคตรอนนั้น เข้ามาสร้างแรงยึดเหนี่ยวด้วยได้เช่น H2O HF NH3 เป็นต้น ดังภาพ
สภาพขั้วของโมเลกุลน้ำและก๊าซคาร์บอนไดออกไซด์

การเกิดพันธะไฮโดรเจนของโมเลกุลน้ำ



สรุปรูปร่างโมเลกุลและไอออนที่ไม่มีและมีอิเล็กตรอนคู่โดดเดี่ยวได้ดังตาราง 




สรุปรูปร่างโมเลกุลและไอออนที่ไม่มีอิเล็กตรอนคู่โดดเดี่ยว
สูตร
จำนวนพันธะ
รูปร่างของโมเลกุล
ตัวอย่าง
AX2
2
เส้นตรง  (linear)
HgCl2, BeCl2
AX3
3
สามเหลี่ยมแบนราบ  (trigonal planar)
BCl3, BF3, GaI3
AX4
4
ทรงสี่หน้า  (tetrahedral)
CH4, CHCl3, SnCl4
AX5
5
คู่พีระมิดร่วมฐานสามเหลี่ยม  (trigonal bipyramidal)
PCl5, PF5, PF3Cl2
AX6
6
ทรงแปดหน้า  (octahedral)
SF6
สรุปรูปร่างโมเลกุลและไอออนที่มีอิเล็กตรอนคู่โดดเดี่ยวได้ดังตาราง
สูตร
จำนวนคู่
อิเล็กตรอนโดดเดี่ยว
รูปทรงที่ได้จากไฮบริดออร์บิทัล
รูปร่างของโมเลกุล
ตัวอย่าง
AX2E
1
สามเหลี่ยม
รูป V
SnCl2, SO2
AX3E
1
ทรงสี่หน้า
พีระมิดฐานสามเหลี่ยม
NH3, PCl3
AX4E
1
คู่พีระมิดร่วมฐานสามเหลี่ยม
กระดานหก
SF4, TeCl4
AX5E
1
ทรงแปดหน้า
พีระมิดฐานจตุรัส
BrF3, IF5
AX2E2
2
ทรงสี่หน้า
รูป V
H2O, SCl2
AX3E2
2
คู่พีระมิดร่วมฐานสามเหลี่ยม
รูป T
BrF3, ClF3
AX4E2
2
ทรงแปดหน้า
จัตุรัสระนาบ
XeF4, ICl4-
AX2E3
3
คู่พีระมิดร่วมฐานสามเหลี่ยม
เส้นตรง
I3-, XeF



วีดีโอการเรียนการสอนเรื่องพันธะโคเวเลนต์